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Supersymmetry in de Sitter space 

D GroPer 
Institut fur Theoretische Physik, Universitat Tubingen, D-7400 Tubingen, Auf der 
Morgenstelle 14, West Germany 

Received 14 August 1978 

Abstract. We investigate the graded Lie algebra of generators of symmetries assuming that 
the even subspace of this algebra is spanned by the generators of the de Sitter group and of 
internal symmetries. We find that the generators of the de Sitter group form the Lie algebra 
of 0 ( 3 , 2 )  and not of O(4 , l )  and that, as in the case of conformal symmetry, there is a 
complete fusion between geometric and internal symmetries. In particular the internal 
symmetry group SO(N)  is generated by Fermi charges. 

1. Introduction and results 

Extended supergravity theories exhibiting an SOjN) internal symmetry have been 
constructed recently (Das 1977, Ferrara et a1 1977, Ferrara and Van Nieuwenhuizen 
1976, Freedman 1977, de Wit and Freedman 1977). To incorporate additional 
interactions one would like to gauge this internal symmetry. This has been done for 
N = 2 and N = 3 by Freedman and Das (1977). However, to preserve local supersym- 
metry an apparent mass term for the spin-? gauge field and a cosmological term must be 
introduced. It has been pointed out by Deser and Zumino (1977) that because of this 
cosmological term one has to quantise in a background space with a metric which is a 
solution of the Einstein equations with a cosmological term and that the simplest and 
most natural space of this kind is the corresponding de Sitter space. In the resulting 
quantum field theory the de Sitter algebra replaces the PoincarC algebra. It therefore 
seems worthwhile to investigate quite generally the structure of the graded Lie algebra 
of generators of symmetries in the case in which the geometric symmetries are 
generated by the elements of the de Sitter algebra. 

A grading of the de Sitter algebra (0(3,2))  can be found among the graded Lie 
algebras given by Freund and Kaplansky (1976): the OSp(4IN). This algebra has also 
been found by Ferrara (1977) as a sub-algebra of the graded conformal algebra given by 
Haag, Zopuszahski and Sohnius (1975). Nahm (1977) has shown that this algebra and a 
grading of the Lie algebra of O(4 , l )  are essentially the only possibilities for grading the 
de Sitter algebras. Our analysis differs from that of Nahm. It shows that under the 
assumptions stated below only the Lie algebra of 0(3 ,2 )  admits a grading and it gives 
.the commutation and anticommutation relations in terms of the generators of trans- 
lations and Lorentz transformations. 

We assume that the ekments of the graded Lie algebra L are operators in the 
Hilbert space of physical states and that the even part B of L is spanned by the 
generators of the de Sitter group P, and MFy and by a finite number of internal 
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symmetry generators B,. Hence we have 

[ M w w  M p . 4  1 = -i(gwfiuA + g u A M w p  - g w h M v p  - g v f i w h  ) (1.1) 

[ M w w  PPI= -i(gw3” -gv$w) (1.2) 

[P,, P,1= -ipMwy (1.3) 

[B,, PILI = [BI, M w v I  = 0. (1.4) 

We shall show that p > 0, i.e. only the Lie algebra of 0 ( 3 , 2 )  admits a grading. Finally 
we assume that there are no Lorentz scalars in the odd part F of L and that an element 
G E F implies G’ E F and an element G E B implies G’ E B. If the S matrix exists then 
the generators can be characterised by two properties: they commute with the S matrix 
and they act additively on the states of several incoming particles. In this case the last 
assumptions can be derived. The first of them follows from the connection between spin 
and statistics. 

We will then prove the following. In the odd part F one can choose a basis a,“ 
( L  = 1 , .  . . , Y ;  Q = 1 ,2 )  and 0: = ((2,“)’ such that the Q L  are two-component spinors: 

where 

with uwy =&u”5.” -u”#“‘, (a”),,j = (1, ai), (P)”’ = (1, - m i ) ,  E,’ = -epa and 
One can further choose the Q,“ such that the following algebraic relations hold: 

= 1. 

{at, Qy} = SLMP,b 

[Qf;, Pp-;] = P ~ ’ ~ E , ~ Q $  

{a!, QY} = ip”2SLMM,p +p1’2~,pALM 

(1.9) 

(1.10) 

(1.11) 

where Pa@ = (a”),,jPw and the ALM are linear combinations of the internal symmetry 
generators BI. From (1.11) one has directly ALM = -AML. Since we will find 

A LM = ( A  ML)+ (1.12) 

the ALM are skew-Hermitian. It will further be shown that 

[Qf;, A M N ] = S L M Q r - S L N Q f  (1.13) 

(1.14) 

and that the ALM with M > L are linearly independent. Therefore the set of all linear 
combinations of the ALM with real coefficients is isomorphic to the Lie algebra of SO(v) 
and the corresponding representation of SO( v) is unitary. 

Let I be the complex span of the B,, Il the complex span of the ALM and let K be the 
set of all elements in I which commute with all Q,“. Then we will finally show that Il and 
K are invariant subalgebras of the Lie algebra I and that I = Il  OK. 

[ALM,  AL’M’]  = sLM’A.ML’- S M M ’ A L L ’ ~  ~ L L ’ A M M ’ +  sML’ALM’ 



Supersymmetry in de Sitter spuce 1753 

2. The graded Lie algebra of symmetry generators 

The proof of the above results is similar to that employed by Haag, Zopuszariski and 
Sohnius (1975). First we use Lorentz invariance to specify a basis in F and to determine 
the general structure of the commutation and anticommutation relations. Then the 
coefficients in these algebraic relations are fixed with the help of Jacobi identities. 

The odd part F carries a representation of the even part B and hence a represen- 
tation of the Lorentz algebra. This representation of the Lorentz algebra can be 
decomposed into irreducibles. The irreducible representations of the Lorentz algebra 
can be labeled by pairs of indices ( j ,  j ' ) ,  each integer or half-integer. Suppose now that 
this decomposition contains the component ( j ,  j ' ) .  The carrier space of this component 
contains an element Q such that 

[A3, Q l  =iQ (2.1) 

183, a]= -j 'Q (2.2) 
where Ai = $(Ji + X i ) ,  Bi = A :  and .Ti = (M23, M31,  MI^), Ki = M O .  Then {Q, Q'} 
belongs to the even part B and to the irreducible representation ( j + j ' ,  j + j ' ) .  B, 
however, is spanned by P,, M,", and the BI. Therefore if j +j '  > 4 then {Q, Q'} = 0. 
Since {a, Q'} = 0 implies Q = 0 we must have j + j ' S  4. By assumption there are no 
scalars in F. Hence we can choose a basis in .F consisting of Y spinors Qf; and v' 
conjugate spinors ai. If Qk is a spinor then (Qk)' is a conjugate spinor and vice versa. 
Hence we must have v' = v and we can choose the 

Commuting Ai, Bi with {Qf;, or} one finds that {Qf;, or} transforms under 
Lorentz transformations in the same way as Pub. Hence one has 

{a:, or} = cLMP,b. (2.3) 
This equation implies that c is Hermitian. Hence we can choose the Qk such that c is 
diagonal. Equation (2.3) then implies 

such that 0; = (Qf;)'. 

(2.4) - L 
0- (Q?)'}+%Qk, (Qk)'}. 

Hence from the assumption that a state with positive energy exists it follows that 
cLL > 0. Therefore we can normalise Qk so that cLM = 6"". 

Consider now [Qf;, Pp+]. The symmetric part in the indices a, p belongs to the 
representation (1, 4). Since there is no such thing it must vanish. The antisymmetric 
part transforms in the same way as the Qy. Hence we have 

(2.5) 

Next, we have to find out what {at, Qr} is. The antisymmetric part in the indices 
a, p is a scalar and hence a linear combination of the BI. The symmetric part transforms 
in the same way as Map. Therefore we have 

(2.6) 

LM -M [Qf;, Pp+l= 6,pb Q+ . 

{Qk, QF} = a LMM,p + 
where 

BLM = c (ur)LMB,. (2.7) 
I 

We now determine the coefficients uLM and bLM with the helpof the Jacobi identity 

(2 .8)  [oi, ( 0 2 ,  0 3 } 1 + { 0 2 , [ 0 3 ,  Oi1}-{03, [oi, 021}=0 
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valid for arbitrary operators. The (Ps+, Qt, Q:) identity yields 
LM LM 

q s b M L P a +  + Easb P o +  = icu (€&Po+ + c6,sPa+). 

This implies 
u L M  = i b L M  

bLM = b M L  

From the (Pa+, Qt, 07) identity we obtain 

ips LM (cbLIQ+,j + E+&&) 

L M ' ~  - = - q$-a L''Mas + E a s b  M3+ 
- ~ b $ ~ ~ ~ f i ~ ~ ' +  E a s b L M ' q + ( B M M ' ) + .  

This implies 
(bb')L = p a L M  
b + M ' M B L M '  = b L M ' ( B h f M ' ) +  

(2.9) 

(2.10) 

(2.1 1)  

(2.12) 

(2.13) 

(2.14) 

Equation (2.13) implies p > 0. It implies further that d = p - l " b  is unitary. Because of 
(2.1 1) d is symmetric. Therefore d can be written in the form d = exp(if) where f is real 
and symmetric (Gantmacher 1958). Hence there is a real orthogonal matrix g such that 
gfg-' is diagonal. Accordingly, we have 

jexp(ial) O i  

with real Si. If we define new Q,' as 

exp ( -isL/ 2) g LL'Q k' 
then these new Q; satisfy (1.9)-(1.11). 

tors 
Equation (2.14) implies (1.12). There is another identity valid for arbitrary opera- 

(2.15) 

Applying this to ay, Q,' and Qr, one obtains (1.13). Applying then (2.8) to ALM, Qt' 
and QF', one obtains (1.14). We shall now show that the AMN with N > M are linearly 
independent. Suppose 

[ O i ,  ( 0 2 ,  0 3 1 1  + [ 0 2 ,  ( 0 3 ,  0 1 1 1  + [ 0 3 ,  ( 0 1 ,  0 2 1 1  = 0. 

1 u M N A ~ ~ = o .  

If we commute this equation with Qf; we obtain 

N > M  

Since the 0: are linearly independent it follows that a M N  = 0. 
Consider now the commutator [ & , A ]  with A E I .  Since it transforms under 

Lorentz transformations in the same way as the Q t  we have 

[at, AI = s L M ( A ) Q Y .  (2.16) 
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One can check easily that the matrices s form a representation of the Lie algebra I. 
Applying then (2.8) to A E I, a,", and QF one finds 

eaa([A, ALM] fsMM'(A)ALM'- sLM'(A)AMM') 
= -i(sML(A) +sLM(A))Mas. (2.17) 

This implies 

sML(A) = -sLM(A), (2.18) 

[A, ALM] = sLM'(A)AMM'-sMM'(A)ALM'. (2.19) 

From (2.19) and (1.14) it follows that Il is an invariant sub-algebra. K is the kernel of 
the representation s and hence is also an invariant sub-algebra. If 

(2.20) 

then it follows from (1.13) that 

sLM(A) = UI.M for M > L. (2.21) 

This implies that the restriction sI1 of s to II is a one-to-one mapping of II onto ~(1). Let 
i be the restriction of the canonical map A E I + A + K  E I / K  to I I  and let s' be the 
one-to-one mapping of I /K  into s ( I )  induced by s. Then i is injective because s ' i  = sIl is 
injective and i is surjective because (SI)-' = i(s1J-I is surjective. Hence i is a one-to-one 
mapping of Il onto I/K. Therefore I = Il OK. 
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